

RECEIVED

FEB 0 3 2016

MARICOPA COUNTY

NON TITLE V. PERMIT

Maricopa County Air Quality Department 1001 N Central Ave, Suite 125, Phoenix, AZ 85004 Phone (602) 506-6010 Fax (602) 372-0587 AQPermits@mail.maricopa.gov

MINOR MODIFICATION APPLICATION

NOTIFICATION OF MINOR MODIFICATION AT A CURRENTLY PERMITTED FACILITY

ALL APPLICANTS MUST COMPLETE THE ENTIRE APPLICATION

Per Rule 220, Section 405 and Section 406, this notification must be submitted for a currently permitted facility for a minor permit revision. This notification is not required for changes in work schedules or relocation of equipment for similar use within a permitted facility.

<u>Important</u>: Please note that email will be our <u>primary</u> means for routine communication with you, unless you do not have an email account. Please be sure that your email address is entered correctly.

Submit this notification prior to making the modifications. If confidentiality is claimed pursuant to ARS §49-487, a fully completed application with confidential information clearly identified along with a separate copy of the application for public review without the confidential information and a written justification for the confidentiality claimed must be submitted. Complete both sides by typing or printing legibly. A filing fee of \$200.00 must accompany your application (make checks payable to MCAQD). If the application is submitted as a result of receiving a notice of violation (NOV), an additional \$100.00 late fee must accompany the application. Before the permit is issued, the Permittee will be billed for all permit processing time required for a billable permit action at a rate of \$150.00 per hour, adjusted annually under Department Rule 280 (Fees), §304. An annual administrative fee will also be charged per Rule 280, §302.2. For questions regarding billing, call (602) 372-1071.

City:	of Site: 32425 West Salome Hwy.					
	A with the same				#	411739
Contact D	Arlington	State: AZ	Zip Code: 853	22 Te	elephone At S	Site: (623) 386-1333
Contact P	Person at Site: Francisco G. Ruiz	(Frank)			•	
Mailing A	ddress :32425 W. Salome Hwy.					
City:	Arlington	State: AZ	Zip Code: 853	22 Te	elephone : (62	3) 872-2341
Fax:	(623) 386-1382	E-mail : fru	iz@hickmanseggs	.com		
The author	rized contact person regarding this app	olication is:				
Name:	Francisco G. Ruiz (Frank)			$\mathrm{T}\epsilon$	elephone : (62	3) 872-2341
Title:	Safety & Health Coordinator			Fa	ix: (62)	3) 386-1382
Fax:	(623) 386-2341	E-mail : fru	iz@hickmanseggs	.com		
I certify that I am familiar with the operations on this application and the information provided herein is true and complete to the best of my knowledge. Signature of owner or responsible official of business: Type or print name and title Francisco G. Ruiz/Safety & Haelth Coordinator Date: January 28, 2016						
Турс О.	or print name and title Francisc	CO G. Kuiz/ Sai	cty & Fracin Coo	Edinator	Date:	January 28, 2016
Do Not W	Write In This Space.				Date	,
Appro	·					
Reason for						

Date Received:

For Office Use Only

Log Number:

NON/TITLE V PERMIT - MINOR MODIFICATION APPLICATION

1. Narrative description of the proposed modification:

Addition of two new (2016) diesel generators 464 HP, 250kw, relocation of two old diesel generators (G-5 & G-6), and one (1997) diesel generator 1,000 kW and two new Miura boilers 300 HP for the Protein Plant:

Two new generators Cummins, model QSL9-G7 NR3, 2016: (These generators will be operating 52 hrs. per year for weekly testing) G-45 for Pullet Houses E & F

G-47 for Lay Houses 9 & 10

The two old generators G-5 & G-6 will be relocated to the truck shop and transportation building.

The 1997 diesel generator Caterpillar, model 3512 DITA, S/N 24Z08199: (This generator will be operating 52 hrs. per year for weekly testing)

G-46 for the Protein Plant

Two Miura Boilers, model LX-300 SG, 300HP, 10,050,000 BTU/HR for the Protein Plant

2. Provide a list of equipment and emission control devices which will be installed or modified:

Assigned Equipment Number	Describe each Piece of Equipment Include Make & Model	Date of Installation or Modification	How Many	HP, KVA Gallons or Other Ratings (Specify Units)	Exhaust - Vent to Air	Exhaust - Vent to Control (Identify)		
G-45	Gen Set 2016 Cummins, QSL9-G7 NR3, 250kW	March 1, 2016	1	464 HP	Yes		Add Row	Remove Row
G-46	Gen Set 1997 Caterpillar, 3512 DITA, S/N 24Z08199	February 28, 2016	1	1,000 kW	Yes		Add Row	Remove Row
G-47	Gen Set 2016 Cummins, QSL9-G7 NR3, 250kW	March 1, 2016	1	464 HP	Yes		Add Row	Remove Row
	Miura Boiler, LX-300 SG, 300 HP	February 28, 2016	2	10,050,000 BTUs each	Yes		Add Row	Remove Row
G-5	Gen Set 2001 Cummins, LTA-10G1, 230kW	March 15, 2016	1	380 HP	Yes		Add Row	Remove Row
G-6	Gen Set 1999 Cummins, LTA-10G1, 230kW	March 15, 2016	- Constitution of the Cons	380 HP	Yes		Add Row	Remove Row

3. Material List: List all materials handled, stored, processed, used, mixed, treated, or emitted. Include chemicals, mixtures, resins, cleaning compounds, etc., in this list. Identify each in sufficient detail and provide material safety data sheets (MSDS)

Material	Annual Usage or Throughput	Chemical Composition (% by weight)	Equipment Number in Which Used		
				Add Row	Remove Row

4. Describe Control Devices

Type of Device	Name/ID	Gas Flow Rate SCFW	Liquid Flow Rate Gal/Min	Control Efficiency (% Weight)		
					Add Row	Remove Row

5. Materials reclaimed or shipped as waste:

NON-TITLE V PERMIT - MINOR MODIFICATION APPLICATION

If applicable, complete the attached section Z-M.

NON-TITLE V PERMIT - MINOR MODIFICATION APPLICATION

SECTION Z-M

AIR POLLUTANT EMISSIONS

Provide a summary of the projected actual air emissions on an annual basis for the entire site in the following summary tables. Attach detailed calculations to support the figures. If supporting calculations are not included with the application, the application will be deemed incomplete.

Provide a summary of the actual air emissions on an annual basis for the following three columns:

- (i) Emissions to be released from only the equipment and affected processes described on this notification
- (ii) The entire site prior to the modification of the equipment and processes described in (i) above.
- (iii) The entire site including the emissions identified in (i) above. Normally, this column will be the sum of columns (i) and (ii).

Pollutant	Column (i)	Column (ii)	Column (iii)		
Carbon Monoxide (CO)					
Oxides Of Nitrogen (NOx)					
Oxides Of Sulfur (SOx)					
Particulates Of 10 Microns Or Smaller (PM ₁₀)				12 m	
Total Suspended Particulates (TSP), Including PM ₁₀	A PER CONTRACTOR OF THE PER CONTRACTOR OF TH				
Volatile Organic Compounds (VOCs) ¹					
Federal hazardous air pollutants (list each one separately)	:			# 1	
				Add Row	Remove Row

¹ VOCs are defined by EPA at: http://www.epa.gov/ttn/naaqs/ozone/ozonetech/def_voc.htm

Attach detailed calculations to support the figures in the above summary tables. Do not include the emissions from motor vehicles. Include the emissions from stationary sources, portable sources, test areas, experimental facilities, evaporative losses, storage and handling losses, fuel loading and unloading losses, etc. Specifically identify the following in detailed calculations:

- 1. Emissions From Each Point Source And Each Stack
- 2. Capture Efficiencies
- 3. Control Efficiencies

- 4. Overall Efficiencies
- 5. Fugitive Emissions
- 6. Non-point (area) Emissions

For particulate (dust) emissions, describe the types of particulates being emitted and the quantities of emissions for each type. Identify and quantify each and every type of VOC that is included in the above summary tables. Whenever a material is identified by a trade name, also provide its generic name and its chemical abstract service (CAS) number.

Help sheets for calculating emissions from specific industries or processes can be obtained at: http://www.maricopa.gov/aq/divisions/planning_analysis/emissions_inventory/instructions.aspx

If you need help completing the application package, please see our website or contact 602-506-5102. http://www.maricopa.gov/aq

NON-TITLE V PERMIT - MINOR MODIFICATION APPLICATION

FEDERAL HAZARDOUS AIR POLLUTANTS LIST

(Federal Clean Air Act, Title I, Section 112(b))

			(rederal Clean All A	ACI, TILIE I,	Section 112(b))	
CAS No.	Chemical name	CAS No.	Chemical name	CAS No.	Chemical name	Chemical name
75070	Acetaldehyde	121697	N,N-Diethyl aniline (N,N-Dimethylaniline)	101688	Methylene diphenyl diisocyanate (MDI)	Antimony Compounds
60355	Acetamide	64675	Diethyl sulfate	101779	4,4'-Methylenedianiline	Arsenic Compounds (inorganic including arsine)
75058	Acetonitrîle	119904	3,3-Dimethoxybenzidine	91203	Naphthalene	Beryllium Compounds
98862	Acetophenone	60117	Dimethyl aminoazobenzene	98953	Nitrobenzene	Cadmium Compounds
53963	2-Acetylaminofluorene	119937	3,3'-Dimethyl benzidine	92933	4-Nitrobiphenyl	Chromium Compounds
107028	Acrolein	79447	Dimethyl carbamoyl chloride	100027	4-NitrophenoI	Cobalt Compounds
79061	Acrylamide	68122	Dimethyl formamide	79469	2-Nitropropane	Coke Oven Emissions
79107	Acrylic acid	57147	1,1-Dimethyl hydrazine	684935	N-Nitroso-N-methylurea	Cyanide Compounds[1]
107131	Acrylonitrile	131113	Dimethyl phthalate	62759	N-Nitrosodimethylamine	Glycol ethers[2]
107051	Allyl chloride	77781	Dimethyl sulfate	59892	N-Nitrosomorpholine	Lead Compounds
92671	4-Aminobiphenyl	534521	4,6-Dinitro-o-cresol, and salts	56382	Parathion	Manganese Compounds
62533	Aniline	51285	2,4-Dinitrophenol	82688	Pentachloronitrobenzene (Quintobenzene)	Mercury Compounds
90040	o-Anisidine	121142	2.4-Dinitrotoluene	87865	Pentachlorophenol	Fine mineral fibers[3]
1332214		123911		108952	Phenol	Nickel Compounds
	Asbestos		1,4-Dioxane (1,4-Diethyleneoxide)			
71432	Benzene (including benzene from gasoline)	122667	1,2-Diphenylhydrazine	106503	p-Phenylenediamine	Polycylic Organic Matter[4]
92875	Benzidine	106898	Epichlorohydrin (1-Chloro-2,3-epoxypropane)	75445	Phosgene	Radionuclides (including radon)[5]
98077	Benzotrichloride	106887	1,2-Epoxybutane	7803512	Phosphine	Selenium Compounds
100447	Benzyl chlo ride	140885	Ethyl acrylate	7723140	Phosphorus	
92524	Biphenyl	100414	Ethyl benzene	85449	Phthalic anhydride	
117817	Bis(2-ethylhexyl)phthalate (DEHP)	51796	Ethyl carbamate (Urethane)	1336363	Polychlorinated biphenyls (Aroclors)	
542881	Bis(chloromethyl)ether	75003	Ethyl chloride (Chloroethane)	1120714	1,3-Propane sultone	For all listings above which contain the word
75252	Bromoform	106934	Ethylene dibromide (Dibromoethane)	57578	beta-Propiolactone	"compounds" and for glycol ethers, unless otherwise
106990	1,3-Butadiene	107062	Ethylene dichloride (1,2-Dichloroethane)	123386	Propionaldehyde	specified, these listings are defined as including any
156627	Calcium cyanamide	107211	Ethylene glycol	114261	Propoxur (Baygon)	unique chemical substance that contains the named
133062	Captan	151564	Ethylene imine (Aziridine)	78875	Propylene dichloride (1,2-Dichloropropane)	chemical as part of that chemical's infrastructure.
63252	Carbaryl	75218	Ethylene oxide	75569	Propylene oxide	
75150	Carbon disulfide	96457	Ethylene thiourea	75558	1,2-Propylenimine(2-Methyl aziridine)	[1] X'CN where X = H' or any other group where a formal
56235	Carbon tetrachloride	75343	Ethylidene dichloride (1,1-Dichloroethane)	91225	Quinoline	dissociation may occur. For example KCN or Ca(CN)2.
463581	Carbonyl sulfide	50000	Formaldehyde	106514	Quinone	
120809	Catechol	76448	Heptachlor	100425	Styrene	
33904	Chloramben	118741	Hexachlorobenzene	96093	Styrene oxide	[2] Includes mono- and di- ethers of ethylene glycol,
57749	Chlordane	87683	Hexachlorobutadiene	1746016	2,3,7,8-Tetrachlorodibenzo-p-dioxin	diethylene glycol and triethylene glycol R(QCH2CH2)n-QR'
7782505	Chlorine	77474	Hexachlorocyclopentadiene	79345	1,1,2,2-Tetrachioroethane	where:
79118	Chloroacetic acid	67721	Hexachloroethane	127184	Tetrachloroethylene (Perchloroethylene)	***************************************
532274	2-Chloroacetophenone	822060	Hexamethylene-1,6-diisocyanate	7550450	Titanium tetrachloride	n = 1, 2 or 3
108907	Chlorobenzene	680319	Hexamethylphosphoramide	108883	Toluene	(1-1,20,0
510156	Chlorobenzilate	110543	Hexane	95807	2,4-Toluene diamine	R = alkyl C7 or less, or phenyl or alkyl substituted phenyl
67663	Chloroform	302012	Hydrazine	584849	2,4-Toluene discovanate	IX - alikyt GF of less, of phenyl of alkyl substituted phenyl
107302	Chloromethyl methyl ether	7647010	Hydrochloric acid	95534	o-Toluidine	R' = H, or alky! C7 or less, or carboxylic acid ester,
126998	Chloroprene	7664393	Hydrogen fluoride (Hydrofluoric acid)	8001352	Toxaphene (chlorinated camphene)	sulfate, phosphate, nitrate, or sulfonate.
1319773	Cresols/Cresvlic acid (isomers and mixture)	123319	Hydrogen naonae (Hydronaona ada)	120821	1,2,4-Trichlorobenzene	surface, priospriate, filtrate, or surfortate.
95487	o-Cresol	78591	Isophorone	79005	1,1,2-Trichloroethane	[3] Includes mineral fiber emissions from facilities manufacturing or
				79016		
108394 106445	m-Cresol	58899 108316	Lindane (all isomers)	95954	Trichloroethyleneprocessing	glass, rock or slag fibers or other mineral derived fibers of average
	p-Cresol		Maleic anhydride		2,4,5-Trichlorophenol	diameter one (1) micrometer or less.
98828	Cumene	67561	Methanol	88062	2,4,6-Trichlorophenol	
94757	2,4-D, salts and esters	72435	Methoxychlor	121448	Triethylamine	P. 201 1 1 1 1 1 1 1 1 1
3547044	DDE	74839	Methyl bromide (Bromomethane)	1582098	Trifluralin	[4] Includes organic compounds with more than one (1) benzene
334883	Diazomethane	74873	Methyl chloride (Chloromethane)	540841	2,2,4-Trimethylpentane	ring and which have a boiling point greater than or equal to 100°C,
132649	Dibenzofurans	71556	Methyl chloroform (1,1,1-Trichloroethane)	108054	Vinyl acetate	
96128	1,2-Dibromo-3-chloropropane	60344	Methyl hydrazine	593602	Vinyl bromide	
84742	Dibutylphthalate	74884	Methyl iodide (lodomethane)	75014	Vinyl chloride	[5] A type of atom which spontaneously undergoes radioactive
106467	1,4-Dichlorobenzene(p)	108101	Methyl isobutyl ketone (Hexone)	75354	Vinylidene chloride (1,1-Dichloroethylene)	decay
91941	3,3-Dichlorobenzidene	624839	Methyl isocyanate	1330207	Xylenes (isomers and mixture)	
111444	Dichloroethyl ether (Bis(2-chloroethyl)ether)	80626	Methyl methacrylate	95476	o-Xylenes	
542756	1,3-Dichloropropene	1634044	Methyl tert butyl ether	108383	m-Xylenes	
62737	Dichlorvos	101144	4,4-Methylene bis(2-chloroaniline)	106423	p-Xylenes	
111422	Diethanolamine	75092	Methylene chloride (Dichloromethane)			

NOTICE OF REGULATORY REFORM

Notice of Regulatory Reform

In accordance with A.R.S. §11-1604:

A. A county shall not base a licensing decision in whole or in part on a licensing requirement or condition that is not specifically authorized by statute, rule, ordinance or delegation agreement. A general grant of authority does not constitute a basis for imposing a licensing requirement or condition unless the authority specifically authorizes the requirement or condition.

- B. Unless specifically authorized, a county shall avoid duplication of other laws that do not enhance regulatory clarity and shall avoid dual permitting to the maximum extent practicable.
- C. This section does not prohibit county flexibility to issue licenses or adopt ordinances or codes.
- D. A county shall not request or initiate discussions with a person about waiving that person's rights.
- E. This section may be enforced in a private civil action and relief may be awarded against a county. The court may award reasonable attorney fees, damages and all fees associated with the license application to a party that prevails in an action against a county for a violation of this section.
- F. A county employee may not intentionally or knowingly violate this section. A violation of this section is cause for disciplinary action or dismissal pursuant to the county's adopted personnel policy.
- G. This section does not abrogate the immunity provided by section 12-820.01 or 12-820.02.

Frank Ruiz

From:

Engles, Brian < Brian. Engles@empire-cat.com>

Sent:

Wednesday, January 27, 2016 1:00 PM

To:

Frank Ruiz

Subject:

RE: 24Z08199 Emissions info

Frank, Here is the response from Cat on your engine.

Greetings,

Engine s/n 24Z08199 was built in 1997 prior to the emissions requirements for EPA nonroad engines >560kW. Engine is Pre-Tier 1.

Regards,

Engine Certification

Hopefully this answers your question, if not feel free to let me know.

Thanks,

Brian Engles
Technical Communicator
Empire Cat Power Systems
Office (602) 333-5689
Mobile (602) 622-5678
Brian, Engles@Empire-Cat.com

Our Corporate Values:

Safety, Respect, Integrity, Teamwork, Excellence, Stewardship, Astonishment,

NOTICE: This e-mail and any attachments are for the intended recipient(s) only and may contain information that is privileged, confidential and/or proprietary. If you are not the intended recipient, please be advised that any reading, distribution, copying, or other use of this e-mail is prohibited. If you have received this e-mail in error, please delete this e-mail immediately. Thank you.

From: Frank Ruiz [mailto:fruiz@hickmanseggs.com]

Sent: Tuesday, January 26, 2016 3:35 PM

To: Engles, Brian

Subject: RE: 24Z08199 Emissions info

Thank you

From: Engles, Brian [mailto:Brian.Engles@empire-cat.com]

Sent: Tuesday, January 26, 2016 2:16 PM **To:** Frank Ruiz < fruiz@hickmanseggs.com>

Subject: 24Z08199 Emissions info

Frank, I have had to submit a request to Cat for the emissions info. I should hear back tomorrow and will let you know.

Thanks,

Brian Engles
Technical Communicator
Empire Cat Power Systems
Office (602) 333-5689
Mobile (602) 622-5678
Brian Engles@Empire-Cat.com

Our Corporate Values:

Safety. Respect. Integrity. Teamwork. Excellence. Stewardship. Astonishment.

NOTICE: This e-mail and any attachments are for the intended recipient(s) only and may contain information that is privileged, confidential and/or proprietary. If you are not the intended recipient, please be advised that any reading, distribution, copying, or other use of this e-mail is prohibited. If you have received this e-mail in error, please delete this e-mail immediately. Thank you.

ENGINE WODEL SERIAL NUMBER

B CATERPILLAE CATE

Medical Revision

CALVIAYS GIVE ALL ILLUEEES.

FOI ENCOREM Equipment Only PETERATOR SET Éque MEC seulement erence 3512 HERE! tos d 1250 WA [1000 M STAURT CENSTATOR DATA 17 XXXPARALUL 400 43 $\{ , \{ \} \}$ HE TOTAL TO PERSONANCE Unio: Unio: CNC OSCHETYPE

Condition to the Condition of the Condit

Exhaust Emission Data Sheet 250DQDAA

60 Hz Diesel Generator Set **EPA NSPS Stationary Emergency**

Engine Information:

Model:

Cummins Inc. QSL9-G7 NR3

Type:

4 Cycle, In-line, 6 Cylinder Diesel

Aspiration:

Turbocharged and CAC Compression Ratio: 16.1:1

Emission Control Device:

Turbocharger and CAC

Bore:

4.49 in. (114 mm)

Stroke:

5.69 in. (145 mm)

Displacement:

543 cu. in. (8.9 liters)

	1/4	1/2	3/4	<u>Full</u>	<u>Full</u>
PERFORMANCE DATA	Standby	Standby	Standby	Standby	<u>Prime</u>
Engine HP @ Stated Load (1800 RPM)	95.5	191	286.5	382	342
Fuel Consumption (gal/hr)	5.95	10.50	15.05	19.59	17.69
Exhaust Gas Flow (CFM)	968.7	1506.1	1906.3	2149.6	N/A
Exhaust Temperature (°F)	634	758	844	940	700
EXHAUST EMISSION DATA				-	
HC (Total Unburned Hydrocarbons)	0.33	0.162	0.09	0.046	0.052
NOx (Oxides of Nitrogen as NO2)	1.67	1.66	2.19	3.42	2.68
CO (Carbon Monoxide)	3.18	3.18	1.85	0.77	N/A
PM (particular Matter)	0.22	0.16	0.08	0.04	N/A
SO2 (Sulfur Dioxide)	0.142	0.132	0.123	0.115	0.12
Smoke (Bosch)	0.53	0.438	0.382	0.238	0.292
			A	II values are Gran	ns per HP-Hou

TEST CONDITIONS

Data was recorded during steady-state rated engine speed (± 25 RPM) with full load (±2%). Pressures, temperatures, and emission rates were stabilized.

Fuel Specification:

46.5 Cetane Number, 0.035 Wt.% Sulfur; Reference ISO8178-5, 40 CFR86.1313-98 Type 2-

D and ASTM D975 No. 2-D.

Fuel Temperature:

99 ± 9 °F (at fuel pump inlet)

Intake Air Temperature: Barometric Pressure:

 77 ± 9 °F

29.6 ± 1 in. Hg

Humidity:

NOx measurement corrected to 75 grains H2O/lb dry air

Reference Standard:

ISO 8178

The NOx, HC, CO and PM emission data tabulated here were taken from a single engine under the test conditions shown above. Data for the other components are estimated. These data are subjected to instrumentation and engine-to-engine variability. Field emission test data are not guaranteed to these levels. Actual field test results may vary due to test site conditions, installation, fuel specification, test procedures and instrumentation. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may results in elevated emission levels.

2015 EPA Tier 3 Exhaust Emission Compliance Statement 250DQDAA Stationary Emergency 60 Hz Diesel Generator Set

Compliance Information:

The engine used in this generator set complies with Tier 3 emissions limit of U.S. EPA New Source Performance Standards for stationary emergency engines under the provisions of 40 CFR 60 Subpart IIII when tested per ISO8178 D2.

Engine Manufacturer:

Cummins Inc

EPA Certificate Number:

FCEXL0540AAB-030

Effective Date:

12/09/2014

Date Issued:

12/09/2014

EPA Engine Family (Cummins Emissions Family):

FCEXL0540AAB(B563)

Engine Information:

Model:

QSL / QSL9 / QSL9-G7 NR3

Bore:

4.49 in. (114 mm)

Engine Nameplate HP:

464

Stroke:

5.69 in. (145 mm)

Type: 4 C

4 Cycle, In-line, 6 Cylinder Diesel

Displacement:

543 cu. in. (8.9 liters) o: 17.8:1

Aspiration: Turbocharged and CAC Emission Control Device:

Compression Ratio: Exhaust Stack Diameter:

6 in.

Diesel Fuel Emission Limits

D2 Cycle Exhaust Emissions	Gran	ns per B	HP-hr Grams per kW			Vm-hr
	NOx +	<u>co</u>	<u>PM</u>	NOx + NMHC	<u>co</u>	<u>PM</u>
Test Results - Diesel Fuel (300-4000 ppm Sulfur)	2.8	1.7	0.07	3.8	2.3	0.10
EPA Emissions Limit	3.0	2.6	0.15	4.0	3.5	0.20
Test Results - CARB Diesel Fuel (<15 ppm Sulfur)	2.6	1.7	0.07	3.5	2.3	0.09
CARB Emissions Limit	3.0	2.6	0.15	4.0	3.5	0.20

The CARB emission values are based on CARB approved calculations for converting EPA (500 ppm) fuel to CARB (15 ppm) fuel. **Test Methods:** EPA/CARB Nonroad emissions recorded per 40CFR89 (ref. ISO8178-1) and weighted at load points prescribed in Subpart E, Appendix A for Constant Speed Engines (ref. ISO8178-4, D2)

Diesel Fuel Specifications: Cetane Number: 40-48. Reference: ASTM D975 No. 2-D.

Reference Conditions: Air Inlet Temperature: 25°C (77°F), Fuel Inlet Temperature: 40°C (104°F). Barometric Pressure: 100 kPa (29.53 in Hg), Humidity: 10.7 g/kg (75 grains H2O/lb) of dry air; required for NOx correction, Restrictions: Intake Restriction set to a maximum allowable limit for clean filter; Exhaust Back Pressure set to a maximum allowable limit.

Tests conducted using alternate test methods, instrumentation, fuel or reference conditions can yield different results.

Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may result in elevated emission levels.

Exhaust Emission Data Sheet

230DFAB

60 Hz Diesel Generator Set

ENGINE

Model: Cummins LTA10-G1 Bore:

4.92 in. (125 mm)

Type:

4 Cycle, In-line

6 Cylinder Diesel

Stroke

5.35 in. (136 mm)

Aspiration: Turbocharged and Aftercooled

Displacement:

610 cu. in. (10.0 liters)

Compression Ratio: 16:1

Emission Control Device: Turbocharger and Aftercooler

PERFORMANCE DATA	STANDBY	PRIME
BHP @ 1800 RPM (60 Hz)	380	345
Fuel Consumption (gal/Hr)	17.1	15.6
Exhaust Gas Flow (CFM)	1825	1645
Exhaust Gas Temperature (°F)	965	940

EXHAUST EMISSION DATA

(All Values are Grams per HP-Hour)

COMPONENT	STANDBY	PRIME
HC (Total Unburned Hydrocarbons)	0.48	0.43
NOx (Oxides of Nitrogen as NO2)	9.30	8.40
CO (Carbon Monoxide)	1.00	1.16
PM (Particulate Matter)	0.50	0.50
SO ₂ (Sulfur Dioxide)	0.56	0.57

TEST CONDITIONS

Data was recorded during steady-state rated engine speed (± 25 RPM) with full load (± 2%).

Pressures, temperatures, and emission rates were stablized.

Fuel Specification:

ASTM D975 No. 2-D diesel fuel with 0.03-0.05% sulfur content (by weight),

and 40-48 cetane number.

Fuel Temperature:

99 ± 9 ° F (at fuel pump inlet)

Intake Air Temperature:

77 ± 9 ° F

Barometric Pressure:

29.6 ± 1 in. Hg

Humidity:

NOx measurement corrected to 75 grains H2O/lb dry air

Reference Standard:

ISO 8178

The NOx, HC, CO and PM emission data tabulated here were taken from a single engine under the test conditions shown above. Data for the other components are estimated. These data are subject to instrumentation and engine-to-engine variability. Field emissions test data are not guaranteed to these levels. Actual field test results may vary due to test site conditions, installation, fuel specification, test procedures and instrumentation. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may result in elevated emission levels.

LX-300 SG Boile	
Utilization Horsepower	300HP
Maximum Pressure	170 psig MAWP
Equivalent Output	10,350 LB/HR
Heat Output	10,050,000 BTU/HR
Efficiency (fuel to steam)	87%
Heating Surface Area	574 FT ²
Operational Weight	10,940 LBS
Shipping Weight	9,800 LBS
	Dimensions Given are Approximate
Width	63 in.
Length	153 1/2 in.
Height	127 in.
Combustion System	Proprietary Forced Draft, Step Fired Modulation Hi-Low-Off
Ignition System	4 Position Step Burner (Hi-Low-Ignition-Off)
Power Supply	208, 230, 460, 575V, 3 phase, 60Hz
	05.0 17.10

Max. Electrical Consumption 35.2 KVA Natural Gas or Propane (3-5 PSIG) Fuel Type 11,500 SCFH **Gas Consumption**

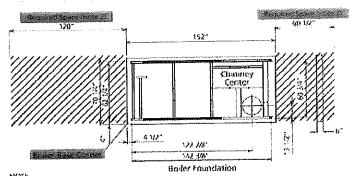
3-5 PSIG Natural Gas or Propane Gas Supply Pressure

4 in.

Main Steam Outlet Valve One 1/2 in. Safety Valve Outlet

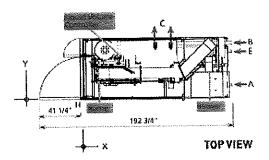
1 1/4 in. Main Water Inlet 2 1/2 in. Fuel Gas Inlet

3/8 in. Automatic Surface Blowdown


One 1 in. & One 1 1/4 in. Manual Blowdown

Chimney Diameter (ID) 20 in.

Flame Detector	Ultraviolet Flame Eye Sensor
Pressure Control	Adjustable Pressure Transducer and Switch
Liquid Volume Control	Electric Conductivity Type
	Low Water Cut Off & Thermocouple


Dimensions

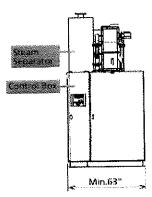
The drawing illustrated is LX-300 SG

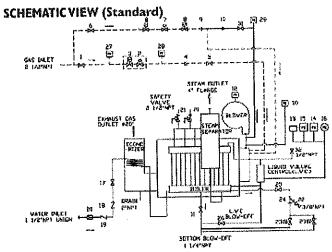
NOTE: Dimensions, specifications, and some piping are subject to crange whoch nation.

2. If the policis are installed side-by side, some space is required for replacing the pressure vessel and some parts.

LX-300 SG

A1	A2	A3	B1	B2	B3	H1	H2	h*	
39 ½	16 ½	21 ½	95 ½	57	78 ½	96	62	68	


Legend		X	Y	Z	Size
Α	Feedwater Inlet	148 5⁄8	13.9⁄16	8.1⁄2.	1.1⁄2" NPT
В	Supply Gas Inlet	148 5⁄8	56.1/4	5.1/4	2.1/2" NPT
С	C Safety Valve Outlet	72 5⁄6 87 13⁄16	55.5⁄8	114.15⁄16	2 x 2.1/2" NPT
D	Steam Outlet	21 13/16	50 5/6	127	4" 150# Flange


E	Button Blow-Off L. V. Control Blowdown Automatic Blowdown	148 5⁄8	47 5⁄8	3	1 1⁄4" NPT	
F	Fuel Gas Outlet	123 3⁄8	13.9/16	95 16/16	20* I. D. Duct	
G	Economizer Drain	123 3⁄8	13 9⁄16	31 7/16	2" NPT	
Н	Boiler Corner	0	0	0		

(Inches)

* Minimum height for Boiler Knock Down

FRONT VIEW

NO.	NAME OF PART	NO,	NAME OF PART
1	MAIN GAS VALVE	17	WATER VALVE
2	MAIN GAS REGULATOR	18	CHECK VALVE
3	GAS CONTROL VALVE	19	CHECK VALVE
4	MAIN GAS ORIFICE	20	FLOW REGULATING VALVE

5	TEST FIRING VALVE	21	SAFETY VALVE
6	PILOT GAS VALVE	22	SAMPLE WATER VALVE
7	PILOT GAS REGULATOR	23	BLOWDOWN CONTROL VALVE
8	PILOT GAS CONTROL VALVE	24	BLOWDOWN STRAINER
9	PILOT GAS ORIFICE	25	BLOWDOWN VALVE
10	PILOT AIR ORIFICE	26	L.V.C. BLOW-OFF VALVE
11	BLOW-OFF VALVE	27	GAS PRESSURE SWITCH
12	PRESSURE SWITCH	28	GAS PRESSURE SWITCH
13	PRESSURE SENSOR	29	AIR PRESSURE SWITCH
14	STEAM PRESSURE SWITCH	30	AIR PRESSURE SWITCH
15	STEAM PRESSURE SWITCH	31	GAS PRESSURE SWITCH
16	STEAM PRESSURE SWITCH	32	AIR CONTROL VALVE

Note

- 1. Unless otherwise specified, all items are standard.
- 2. This drawing is illustrated with an economizer.
- 3. Flanges used are anNsi B16.5 class 150#.
- 4. S safety valve size will change for boiler set below 150psig.
- 5. Design, specifications and some pipings are subject to change without notice.

© 2016 MIURA AMERICA CO., LTD.